The cubic fourth-order Schrödinger equation

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Cubic Fourth-order Schrödinger Equation

Fourth-order Schrödinger equations have been introduced by Karpman and Shagalov to take into account the role of small fourth-order dispersion terms in the propagation of intense laser beams in a bulk medium with Kerr nonlinearity. In this paper we investigate the cubic defocusing fourth order Schrödinger equation i∂tu +∆ 2 u + |u|u = 0 in arbitrary space dimension R for arbitrary initial data....

متن کامل

Quasi-invariant Gaussian measures for the cubic fourth order nonlinear Schrödinger equation

We consider the cubic fourth order nonlinear Schrödinger equation on the circle. In particular, we prove that the mean-zero Gaussian measures on Sobolev spaces [Formula: see text], [Formula: see text], are quasi-invariant under the flow.

متن کامل

Dynamics of solitons and quasisolitons of the cubic third-order nonlinear Schrödinger equation.

The dynamics of soliton and quasisoliton solutions of the cubic third-order nonlinear Schrödinger equation is studied. Regular solitons exist due to a balance between the nonlinear terms and (linear) third-order dispersion; they are not important at small alpha(3) (alpha(3) is the coefficient in the third derivative term) and vanish at alpha(3)-->0. The most essential, at small alpha(3), is a q...

متن کامل

Fourth order real space solver for the time-dependent Schrödinger equation with singular Coulomb potential

We present a novel numerical method and algorithm for the solution of the 3D axially symmetric timedependent Schrödinger equation in cylindrical coordinates, involving singular Coulomb potential terms besides a smooth time-dependent potential. We use fourth order finite difference real space discretization, with special formulae for the arising Neumann and Robin boundary conditions along the sy...

متن کامل

The Fourth-Order Dispersive Nonlinear Schrödinger Equation: Orbital Stability of a Standing Wave

Considered in this report is the one-dimensional fourth-order dispersive cubic nonlinear Schrödinger equation with mixed dispersion. Orbital stability, in the energy space, of a particular standing-wave solution is proved in the context of Hamiltonian systems. The main result is established by constructing a suitable Lyapunov function.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Functional Analysis

سال: 2009

ISSN: 0022-1236

DOI: 10.1016/j.jfa.2008.11.009